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Abstract
We calculate colloid–colloid correlations using an integral equation theory
recently introduced to study charged colloidal suspensions (Anta and Lago
2002 J. Chem. Phys. 116 10514). Colloid–ion, colloid–colloid and ion–ion
correlations are treated using different levels of approximation. The colloid–
ion direct correlation function (DCF) is obtained initially from a given colloid–
colloid pair structure by solving the corresponding hypernetted-chain (HNC)
integral equation. It is then used to formulate an effective colloid–colloid pair
potential for which the one-component reference hypernetted chain equation
(RHNC) is solved. This strategy is used to compute self-consistent colloid–ion
and colloid–colloid correlation functions. Ion–ion correlations are considered
within the mean spherical approximation and are uncoupled from the others.
The present method converges faster and is numerically more stable than
traditional multi-component HNC/RHNC integral equation approaches, and
provides accurate results for all correlation functions for a wide range of
thermodynamic states. Moreover, it exhibits a larger solution region than
the ordinary HNC equation for charged systems. Results in the proximity
and within the ‘HNC’ non-solution boundary are discussed. We find that the
onset of non-solution behaviour for the present theory appears when the surface
charge density of the colloidal particle is very large. To understand the origin
of the non-solution line and to address the effect of multi-body interactions
in colloid–colloid interactions, we have extracted ‘empirical’ bridge functions
from molecular dynamics simulations of charged colloidal suspensions with
charge asymmetries 20:2 and 60:1 and states close to the non-solution region.
The colloid–colloid bridge functions exhibit attractive features at intermediate
colloid–colloid distances, whereas the colloid–ion bridge function is strongly
attractive in the proximity of the non-solution boundary. These attractive
components cannot be accounted for by either the hard-sphere bridge function
or the first resummed (second order in density) bridge diagrams.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

In a recent paper [1], two of the present authors proposed an integral equation theory aiming to
describe efficiently the colloid–colloid structure while taking into account the multi-component
nature of the colloidal suspension. This approach is based on an iterative, self-consistent
procedure, which permits us to obtain readily an effective pair potential between colloids. The
evaluation of the effective potential between colloidal particles is a key ingredient to interpret
the microscopic structure and the phase behaviour of colloidal suspensions [2]. Colloidal
suspensions are multi-component systems characterized by a large asymmetry in size and
charge. In this situation, the standard and most efficient way of dealing with the problem is
by coarse graining, i.e., to eliminate the degrees of freedom of the smaller and less charged
particles so that the mixture is treated as an effective one-component system (OCS) of large
particles. The most prominent example of a coarse-graining procedure is the well known
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory and effective potential [3], widely used
nowadays in colloidal science. The DLVO potential, obtained originally from Poisson–
Boltzmann theory, can also be derived in the context of density functional theory (DFT) by
integrating out the degrees of freedom of the small particles [4, 5]. Although this treatment
leads to an effective potential which can be pairwise additive under certain approximations,
integration of the degrees of freedom of the small particles in the total partition function does
not produce an effective potential that is, a priori, pairwise additive. Moreover, as recently
pointed out by Louis [6], an effective potential that leads to the right thermodynamics might
not be adequate to describe the structure, and vice versa.

In the context of integral equation theories [7], a different route is normally followed to
obtain the effective inter-colloidal potential [8]. In this case, the OCS is defined as a simple
fluid which has the same colloid–colloid radial distribution function as the original mixture.
The colloid–colloid structure determines a single interaction potential between colloids which
is pairwise additive by definition. This is based on Henderson’s theorem [9] which establishes
that, in any many-body homogeneous system at a given global density, there is a one-to-one cor-
respondence between g(r) and a pair potential u(r). The effective potential so obtained not only
leads to the right colloid–colloid structure (by definition), but it can be used to evaluate the ther-
modynamic properties provided the other radial distribution functions, colloid–counterion and
counterion–counterion, are also known. In this paper we will follow this alternative approach.

In our previous paper we have also shown that it is not necessary to use the same level of
approximation for all the correlations in a colloidal mixture. Thanks to the large asymmetry
in size and charge, colloid–ion and ion–ion correlations can be adequately treated in the
hypernetted-chain approximation (HNC) and in the mean spherical approximation (MSA)
respectively [7, 10]. The most sophisticated closure relation, i.e., the reference hypernetted-
chain (RHNC) theory, is used to describe the OCS only. It is shown [1] that this simplification
leads to accurate colloid–colloid radial distribution functions and effective potentials, while
reducing the numerical complexity of the problem. This method is totally analogous to a
strategy that has been put forward in liquid metals [11] in the context of the so-called quantum-
hypernetted-chain (QHNC) theory [12]. Several works discussing the use of this procedure in
colloidal suspensions can be found in the literature [13]. Furthermore, a similar procedure has
been used to describe the electrical double layer in planar geometries [14]. In this work, the
authors utilize the HNC closure to treat the wall–ion correlations whereas ion–ion correlations
are considered within the MSA approximation. We call our approach [1] ‘coarse-grained’
hypernetted chain (CGHNC) since this integral equation method represents an efficient way
of eliminating the degrees of freedom of the small particles and it focuses only on the effective
one-component system only.
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In this paper we study the non-solution boundary of the CGHNC integral equation. We will
show that the CGHNC equation has a solution for thermodynamic states where the ordinary
HNC equation does not. Despite this improvement, the CGHNC cannot be solved either
when the colloidal bare charge is very large or when the packing fraction of colloids becomes
very small. We showed in our previous work [1] that, at fixed colloidal packing fraction, the
magnitude that really determines whether the integral equations can be solved or not is the
surface charge density of the colloidal particle. We have already suggested this can be related
to the phenomenon of ‘ionic condensation’ [15], as a large surface charge density favours a
strong electrostatic coupling at the colloidal surface. Ionic association is by no means exclusive
of charged colloidal suspensions. Indeed, it is a general fact in electrolyte systems [16], and
results in ionic cluster formation in the low-density–high-ionic-strength limit [17]. In fact, a
condensation model for colloidal suspensions in the spirit of the Bjerrum association extension
of the Debye–Hückel theory of electrolytes has been successfully applied to these systems [18].
New integral equation approaches based on association concepts have also been recently used
to study ion–ion correlation in colloidal suspensions [19].

In this work we explore the capability of the integral equation formalism to surmount
the deficiencies observed in previous theoretical approaches, in particular the multicomponent
HNC theory. At this point it must be noted that the Ornstein–Zernike theory along with its
‘closure relations’ constitutes an exact formalism if the so-called bridge functions are known.
Therefore, we expect that the ionic condensation effects should be manifested in the shape
of the exact bridge functions. With this aim, we have extracted ‘empirical’ bridge functions
from molecular dynamics simulations for thermodynamic states in the vicinity of the CGHNC
integral equation non-solution line. We have then compared the results for the colloid–colloid
bridge function with the hard-sphere bridge function that minimizes the total free energy of
the mixture (in the spirit of the RHNC theory). In addition, we have incorporated into the
OCS part of the CGHNC formalism the computation of the first diagrams (second order in
density) of the colloid–colloid bridge function [20]. We will show that neither the hard-sphere
bridge function, which is repulsive by definition, nor the first ‘resummed’ (written in terms
of h-bonds) bridge diagrams, are capable of catching the attractive features observed in the
‘empirical’ bridge function.

The outline of the paper is as follows: in section 2 we briefly rewrite the derivation
of the CGHNC theory and the numerical strategy used to implement it. In section 3 we
analyse the performance of the CGHNC with respect to the ordinary multi-component HNC
integral equation and we present results for the correlation functions, effective potentials
and thermodynamic properties of colloid–counterion mixtures at thermodynamic states for
which the ordinary multicomponent HNC theory does not have a solution. Comparison
with molecular dynamics data is also included in this section. Section 4 reports ‘empirical’
bridge functions extracted from molecular dynamics simulations along with hard-sphere bridge
functions and the first resummed bridge diagrams. Finally, in section 5 the main conclusions
of this work are summarized.

2. The CGHNC theory

In the present work we consider a system of colloidal particles with positive charge zc in the
presence of negatively charged counterions of charge −zi. The number density of the colloids
is ρc whereas the density of the counterions is given by the charge electroneutrality condition,
hence ρi = −(zc/zi)ρc. Colloids and counterions interact via pair potentials of the type

umn(r) = usr
mn(r) +

zm zne2

4πεr
, (m, n = c, i) (1)
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where usr is a short-range interaction and ε is the permittivity of the solvent, which is taken as
a continuum. In order to derive equations that conveniently describe our system we proceed
as follows.

Step 1 (Many-body problem). In the integral equation formalism, many-body interactions
are treated by means of the Ornstein–Zernike (OZ) equations [10]. For a binary mixture they
can be written as [21]

Scc(k) = [1 − ρiCii(k)]/D(k)

Sci(k) = √
ρcρiCci(k)/D(k)

Sii(k) = [1 − ρcCcc(k)]/D(k)
D(k) = [1 − ρiCii(k)][1 − ρcCcc(k)] − ρcρi[Cci(k)]2

(2)

where the Smn(k) (c = colloid, i = counterion) are the Ashcroft–Langreth partial structure
factors [22]. These are related to the total correlation functions (TCFs) hmn via

Smn(k) = δmn + (ρmρn)
1/2

∫
V

dr eik·rhmn(r) = δmn + (ρmρn)
1/2hmn(k), (3)

with the Cmn(k) being the direct correlation functions (DCFs). The OZ equations are exact
relations between all TCFs, describing the pair structure of the system, and the second-order
functional derivatives of the excess free energy represented by the DCFs [10, 11, 21]. In a
one-component fluid, the OZ equations (2) reduce to the familiar form

S(k) = 1 − ρh(k) = 1

1 − ρC(k)
. (4)

Step 2 (Coarse graining). As mentioned in the introduction, we reduce the problem to an
effective one-component system (OCS) by taking [8, 11]

S(k) = Scc(k) (5)

where S(k) is the structure factor of the OCS. Thus, the OCS is defined as the fluid whose
characteristic pair structure is identical to the colloid–colloid pair structure of the original
two-component system. In this way, we make sure that the effective pair potential describing
the OCS contains, by definition, all many-body contributions associated with the counter-ionic
degrees of freedom via the OZ equations. The effective potential so constructed is then state
dependent but pairwise additive by definition.

By combining equations (2), (4) and (5) we find the following relationship between the
DCFs of the OCS and the mixture:

C(k) = Ccc(k) +
ρi[Cci(k)]2

1 − ρiCii(k)
. (6)

Step 3 (Effective potential). In order to find an expression for the interaction characteristic
of the OCS, i.e. the effective potential, we utilize the same strategy as before but now applied
to the pair distribution functions gmn(r) = hmn(r) + 1 and their corresponding potentials of
mean force wmn(r) [10]

g(r) = exp[−βw(r)] = gcc(r) = exp[−βwcc(r)] (7)

where β = 1/kBT . The potential of the mean force can be related in turn to the DCFs, hence

−βueff(r) + h(r)− C(r)− B(r) = −βucc(r) + hcc(r)− Ccc(r)− Bcc(r) (8)

where ueff(r) is the effective potential and the Bmn are the so-called bridge functions. The
bridge functions are related to the ‘higher-than-two’ functional derivatives of the excess free
energy functional with respect to the density profiles [21]. Neglecting their contribution leads
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to the well known HNC approximation [21]. In contrast, by including them in equation (8),
we start from an approach that is formally exact. We next make use of equation (6) to arrive
at the following expression for the effective pair potential between colloids3

βueff(r) = βucc(r)−
∫

Cci(k)χii(−k)Cci(−k) dk + [Bcc(r)− B(r)]

= βu′
eff(r) + [Bcc(r)− B(r)] (9)

with

χii(k) = ρi

1 − ρiCii(k)
, (10)

which is the linear-response function of the fluid of counterions. Equation (9) shows that
the effective interaction u′

eff(r) between colloidal particles is made up of two contributions:
(1) direct Coulombic repulsion and (2) counterion-mediated attraction between colloids and
the ionic ‘atmosphere’ of neighbouring colloids, this ‘atmosphere’ being represented by
the counterion density profile around a colloidal particle nci(k) = χii(k)Cci(k). This is
exactly analogous to the expression for the effective potential between positive metallic
ions in liquid metals [10] if we regard the colloid–counterion DCF as an ion–electron
pseudopotential [11, 12]. The only difference is that in the present case the background
fluid (electrons in liquid metals, counterions in colloidal suspensions) is not of a quantum
nature and therefore can be treated on the same grounds as the rest of the components of the
fluid.

Step 4 (Counter-ionic background). The expression introduced above for the effective
potential depends on the counterion–counterion correlations via the response function, which
in turn depends on the DCF. In the present approach, we choose a simple expression for this
DCF,

Approximation 1: Cii(r) =
{

−βuii(σi)γ (ρi, σi) r < σi

−βuii(r) r > σi,
(11)

where σi is the diameter associated with the counterions and γ is a constant parameter that
is chosen such that Cii is continuous at r = σi and consistent with the condition of excluded
volume for the colloidal cores. Following the DFT treatment of van Roij et al [4], we make
the following choice for γ :

γ (ρi, σi) =
(

κDσi

1 + κDσi

)
(12)

with κD being the inverse Debye length, i.e.

κ2
D = 4πρiz2

i

kBT ε
. (13)

Note that, by using this approximation, we make the counterion–counterion direct correlation
function independent or uncoupled from the rest of the correlations in the mixture. In other
words, we assume that colloids move in a sea of counterions and interact with them with a
response function that behaves as if the colloids were absent. Also, this procedure implies
treating counterion–counterion interactions in the mean spherical approximation (MSA) [10],
i.e., excluded volume condition at short distances plus equivalence between interaction

3 It must be noted that in our previous paper [1], the effective potential did not contain any bridge-function contribution
as it was assumed that the colloid–colloid bridge function and the one-component bridge function were essentially
identical. We will show later that this approximation is not needed to formulate the CGHNC theory. The effective
potential defined in our previous work corresponds to what we denote here by u′

eff(r).
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potential and DCF at long distances. By using this simplification we reduce the numerical
complexity of the integral equation without reducing its accuracy. Hence, we will show later
that we get very precise results not only for the colloid–colloid and colloid–counterion radial
distribution functions, but also for the counterion–counterion structure itself.

Step 5 (Colloid–counterion correlation). We treat this interaction in the HNC approxima-
tion, which means that the colloid–counterion mean-force potential is obtained through

Approximation 2: wci(r) = βuci(r)− hci(r) + Cci(r). (14)

This equation is solved in conjunction with the colloid–counterion part of the OZ equations (2)

hci(k) = Cci(k) + ρcCci(k)hcc(k) + ρiCii(k)hci(k), (15)

where Cii is given by equation (11) and hcc, which describes the colloid–colloid pair structure,
is an input to this part of the problem. In other words, the distribution of counterions around a
colloidal particle is obtained by solving the multi-component HNC equation for a given, fixed,
colloid–colloid pair distribution. As shown in [1], this choice proves to be more adequate
than linearized Poisson–Boltzmann theory to describe the colloid–counterion structure a finite
density of colloids.

Step 6 (Solution of the effective colloid–colloid problem). Once we have solved the
colloid–counterion correlation, and obtained Cci(r), the effective potential between colloids is
completely determined via equations (10)–(12). In the OCS, this potential induces a colloid–
colloid pair structure that is obtained using the RHNC approximation:

Approximation 3: w(r) = βu′
eff(r)− h(r) + C(r) + B0

cc(r; D), (16)

where u′
eff(r) is defined in equation (9) and B0

cc is the bridge function of a reference hard-sphere
system [23]. This depends parametrically on the hard-sphere diameter D. As the mean-force
potential is directly related to the h(r) via h(r) = exp[−w(r)] − 1, the colloid–colloid pair
structure is completely determined, for a given D and effective potential, by equation (16)
coupled with the one-component OZ equation (4). Alternatively, the bridge function can be
ignored in equation (16), such that the HNC approximation is also applied in the colloid–
colloid problem. As we will see below, this provides a good first approximation of both the
colloid–colloid and colloid–counterion correlations.

2.1. General strategy and numerical details

Both steps 5 and 6 consider the solution of an integral equation for only one correlation,keeping
the rest fixed. In view of this, we iterate over steps 5 and 6 until self-consistency is achieved.
The result should be equivalent to the solution of the full multi-component OZ equations
with MSA, HNC and RHNC closures for the counterion–counterion, colloid–counterion and
colloid–colloid correlations respectively.

The whole formalism still depends parametrically on a single parameter, the hard-
sphere diameter D. In our previous work we optimized D by requiring thermodynamic
consistency [24] between the total pressure obtained from the compressibility route and the
virial route. Nonetheless, we have found that it is more robust to vary D until the total HNC
free energy of the mixture [23, 24] reaches a minimum.

The HNC and RHNC integral equations are solved numerically on a grid of 4096–16 384
points with a grid size of 0.01–1 nm in real space. The method of Ng [25] combined with
Broyles’ strategy [26] to mix conveniently successive estimates of the correlation functions
is employed to enhance the convergence in the numerical solution of each integral equation.
As regards the full CGHNC self-consistent procedure, we start from the HNC solution of the
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Figure 1. Colloid–colloid radial distribution functions for hard-core colloid–counterion mixtures
as defined in table 1. Results predicted by the CGHNC and HNC theories are included in the graph
as well as the charge asymmetries for which these results were obtained.

OCS described by the standard DLVO effective potential. Self-consistency is then obtained
normally in a few successive iterations of steps 5 and 6. As mentioned above, when solving
the OCS in the RHNC approximation, different values of D are tested until the total HNC free
energy of the mixture is minimized.

3. Microscopic structure and effective potentials

3.1. CGHNC versus ordinary HNC

In order to check the performance of the CGHNC as compared with the standard HNC theory
for mixtures, we have solved both theories for systems of increasing charge asymmetry. In
order to make the comparison as significant as possible, we have kept the total packing fraction
and the colloidal surface charge density equal in all cases. The parameters that define the system
as well as the results obtained for the virial pressure and excess free energy can be found in
table 1. Also, the colloid–colloid radial distribution functions are plotted in figure 1. It must be
noted that in these calculations the OCS in the CGHNC equations (equation (17)) are treated in
the HNC approximation, i.e., no colloid–colloid bridge functions were introduced. Otherwise,
the comparison between the two theories would not be consistent.

The first conclusion to be extracted from this comparison is that, in spite of the
approximations considered in the derivation of the CGHNC equations, the theory leads to very
similar results to those obtained from the solution of the full HNC equations. The comparison
is somewhat worse for the system with the largest charge asymmetry (30:1) because in this
case the colloidal structure is much more pronounced and, therefore, the MSA approximation
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Figure 2. Total isothermal compressibility versus colloidal packing fraction for colloid + counterion
mixtures with pointlike monovalent counterions at 298 K with colloidal charge Z = 20 and colloidal
radii as shown. HNC results are from [16] and CGHNC results are obtained with the OCS treated
in the HNC approximation (see the text for details).

Table 1. Parameters of hard-core colloid–counterion mixtures (with monovalent counterions) and
thermodynamic results, pressure (P) and excess free energy (A), from CGHNC and standard HNC
theories.

CGHNC HNC

ρc (nm−3) ZC/electrons σc (nm) σi (nm) P/ρkT Aex/NkT P/ρkT Aex/NkT

0.096 5 1.5 0.32 1.22 −1.24 1.25 −1.12
0.035 10 2.1 0.35 1.01 −2.11 1.06 −2.02
0.012 20 3 0.4 0.83 −3.20 0.84 −3.25
0.006 53 30 3.67 0.4 0.74 −4.06 0.78 −4.09

becomes inaccurate treating counterion–counterion correlations. Nonetheless, the CGHNC
converges much faster that the full HNC integral equation and it can provide accurate results
for thermodynamic states for which the multicomponent HNC does not have a solution.

In order to show the numerical advantages of the present integral equation theory, we
have solved the CGHNC equations for hard-core colloid–counterion mixtures with pointlike
monovalent counterions (see figure 2). This case was already studied by Belloni with the
standard multi-component HNC equations [16]. A most prominent feature of our calculations
is that the CGHNC equations can be solved at much lower packing fractions and much larger
surface charge densities than the ordinary HNC. As we showed in [1], the CGHNC integral
equation becomes increasingly more unstable with increasing surface charge densities. This is
also true for the ordinary HNC. What we can observe here is that the CGHNC improves in this
respect upon the HNC approach. This improvement is by no means spurious or artificial. As we
will show below by comparison against molecular dynamics simulations, the CGHNC theory
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provides accurate results for thermodynamicstates for which the ordinary HNC does not have a
solution. Theories that introduce association ideas [19], i.e. the associated HCN (AHNC), also
improve with respect to the traditional multicomponent HNC integral equation. Unfortunately
there are not systematic studies on the non-solution region, and therefore it is not possible to
establish a full comparison on whether our theory extends further the non-solution region. The
AHNC gives solutions for colloidal suspensions down to 0.001 M and colloid radius 1.5 nm.
This corresponds to ∼0.85% packing fraction. According to figure 2, the CGHNC theory can
extend the solution range below 0.5%.

3.2. CGHNC versus molecular dynamics: colloid–counterion mixtures with charge
asymmetry 60:1 and 60:2

In this section we present results for two systems for which the ordinary multi-component
HNC equation does not have a solution. In these calculations the short-range potential in
equation (1) is taken to be [27]

usr
mn(r) = Fmn/r9 (17)

with Fmn chosen such that the minimum in the total soft-core potential coincides with that in the
corresponding hard-core one, that is, Fmn = −zm zne2σ 8

mn/(9ε). We have chosen σcc = 4 nm,
σci = 2.2 nm and σii = 0.4 nm. The density of colloidal particles is taken as ρc = 0.002 nm−3.
The simulations involved typically 3 × 105 time steps, with a time step of 0.01 ps and 5 × 104

steps of equilibration, and were performed in the Nosé–Hoover ensemble using the DL POLY
package [28]. The simulations were run in parallel in the HPCx supercomputer at the University
of Edinburgh (UK) using 32 nodes. Results for the colloid–colloid, colloid–counterion and
counterion–counterion radial distribution functions can be found in figures 3 and 4.

Comparison with simulation results shows that the CGHNC is very accurate in reproducing
the colloid–counterion g(r). As for the colloid–colloid structure this is only well described if a
hard-sphere bridge function with optimized hard-sphere diameter is introduced in the solution
of the OCS (see equation (16)). The counterion–counterion structure deserves a separate
comment. As stated above, in the CGHNC procedure the counterion–counterion correlations
are not solved self-consistently with the rest of the correlations. On the contrary, they are
kept uncoupled and treated with the simplest approximation, i.e., the MSA. Therefore, it is
not expected to achieve good agreement with exact simulation results for these correlations.
Nevertheless, once a convergent CGHNC solution is obtained, it is possible to invert the
OZ equations and extract the counterion–counterion correlations from the rest. We report
the result obtained in this way in the lower part of figures 3 and 4. We can see that,
despite the simplification intrinsic to the CGHNC procedure, the counterion–counterion radial
distribution function accurately reproduces the molecular dynamics results. This fact proves
that introducing approximation 1 in equation (12) firstly reduces the numerical complexity of
the integral equation, and secondly leads to an accurate description of the mixture.

In table 2 we also report the thermodynamic properties for the suspensions discussed
above. The agreement between CGHNC and molecular dynamics is very good, in particular
for the 60:1 mixture. For the 60:2 case, we observe that the introduction of a hard-sphere
bridge function with optimized diameter somewhat deteriorates the results. This could be a
consequence of a larger relative contribution of the counterion–counterion correlations, which,
as explained above, is not obtained self-consistently with the rest of the correlations.

It is also interesting to check the effective colloid–colloid pair potentials. These can be
obtained self-consistently in the context of the CGHNC equations. The results for the 60:1
and 60:2 cases are presented in figure 5. We have also included in this graph the results for
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Figure 3. Radial distribution functions for soft-core mixtures of colloid and monovalent counterions
with σcc = 4 nm, σci = 2.2 nm and σii = 0.4 nm and density of colloidal particles ρc = 0.002 nm−3

(see the text for details). White circles correspond to molecular dynamics results, solid curves refer
to CGHNC predictions with the OCS treated in the HNC approximation (that is, Bcc(r) = 0) and
broken curves also correspond to the CGHNC but the OCS treated in the RHNC approximation
with a hard-sphere bridge function with optimized hard-sphere diameter.

Table 2. Thermodynamic properties for soft-core mixtures of colloid and counterions (both
monovalent and divalent) with σcc = 4 nm, σci = 2.2 nm and σii = 0.4 nm and density of colloidal
particles ρc = 0.002 nm−3 (see text for details).

60:1 60:2

U ex/NkT P/ρkT U ex/NkT P/ρkT

CGHNC (Bcc = 0) −6.400 0.4589 −17.223 0.1503
CGHNC (Bcc = B0) −8.021 0.4076 −17.194 0.0757
MD (see [27]) −8.014 ± 0.001 0.420 ± 0.001 −17.434 ± 0.001 0.260 ± 0.001
MD (this work) −8.064 0.412 −17.303 0.259

the effective potential for a denser state, that is, further away from the non-solution boundary
of the integral equation. We observe that whereas the effective potentials at high density
remain repulsive at all distances, their lower-density counterparts become attractive for the
states close to the non-solution line. We note that these effective potentials are not the same
potentials that are extracted, for instance, from reverse Monte Carlo calculations [29]. The
true OCS effective potential is given in our case by βueff(r) in equation (9) (see footnote 3).
The effective potential βu′

eff(r), represented in figure 5, depends on the difference between the
colloid–colloid bridge functions of the OCS and the multicomponent system. This difference
is sometimes taken as zero [1, 12], and in that case both effective potentials, βueff(r), βu′

eff(r)
are equal. The effective potential for the suspension 60:1, 0.002 nm−3 for the case of hard-core
particles, has been obtained by Lobaskin and co-workers [29]. This potential is repulsive, in
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Figure 4. The same as figure 3 but for divalent counterions.

clear contrast with our βu′
eff(r). We expect that the βueff(r) for our soft model should be

very similar to the hard-sphere case, i.e., repulsive. Therefore, this would suggest that the
bridge functions, Bcc and B in equation (9), should indeed be different for the 60:1 system
in the vicinity of the non-solution boundary. The dependence of βu′

eff(r) with the bridge
functions is further supported by our results in figure 5, where we have also considered the
effective potential, βu′

eff(r), without including the bridge function. One can see that the bridge
function has a large effect on this potential, and when we do not include it in the calculation
we obtain effective potentials that are basically repulsive. Therefore we would like to point
out that βu′

eff(r) should not be taken as representative of the real effective potential but as a
formal interaction that defines the OCS in the context of the CGHNC theory. Given that the
real potential is expected to be in most cases repulsive, the existence of an attractive region
in our βu′

eff(r) is indicative of a significant difference between the bridge functions of both
the OCS and the multicomponent systems. On the other hand, the existence of an attractive
contribution is not necessarily connected to the existence of a spinodal line. We note that the
non-solution line of the integral equation does not necessarily coincide with the spinodal. This
kind of behaviour is also observed in low-temperature primitive electrolytes, where the HNC
non-solution line appears at temperatures much higher than the coexistence temperatures [17].

4. Bridge functions

As we have shown in the previous section and in [1], the CGHNC integral equation does not
have solution when the surface charge density of the colloidal particle becomes very large or
the total density decreases below a certain threshold. In order to shed light on the origin of the
non-solution boundary of this type of integral equation theory, we have extracted the bridge
functions of the mixture from the computer-simulated pair correlation funcions. We must bear
in mind that the integral equation approach is formally exact if the bridge functions of a system
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Figure 5. Effective potentials from CGHNC theory for the cases studied in figures 3 and 4 (solid
curves) and for the same cases but at a higher colloidal density (broken curves). CGHNC results
without the use of a bridge functions are also included in the graph.

are known. For this reason we have extracted ‘empirical’ bridge functions from molecular
dynamics simulations for colloid + counterions mixtures.

The bridge functions were extracted from the simulated radial distribution functions using
a method previously considered by one of us in electrolyte solutions [17]. The method is
described here for the sake of completeness. The definition of the radial distribution function
in terms of the pair potential and the bridge function,

gi j(r) = exp[−βui j(r) + hi j(r)− ci j(r)− Bi j(r)] (18)

can in principle be used to extract the corresponding bridge functions. Since the total correlation
function is known from simulation, it is straightforward to obtain the direct correlation
function using the Ornstein–Zernike relation in Fourier space. Nonetheless, even for the
largest interparticle distances considered here the correlation functions have not attained their
asymptotic value. This fact introduces inaccuracies in the calculation of the Fourier transform
of hi j for small values of the wavevector, k → 0. It is therefore more accurate to resort to
an iterative method that combines the simulated radial distribution functions with the exact
asymptotic behaviour of the direct correlation function [30].

The method considers the solution of the renormalized Ornstein–Zernike equation coupled
with the closure relation:

hsr
i j (r) = hMD,sr

i j (r), r � rc

csr
i j(r) = −βusr

i j(r), r > rc
(19)

where hMD,sr
i j is the simulated short-range total correlation function, usr

i j is the short-range pair
potential and rc is a cut-off. In the context of the renormalized OZ integral equation, these
short-range terms arise from the splitting of the total pair potential, ui j(r), into short- and
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long-range parts, usr
i j(r) = ui j(r)− ulr

i j(r), where

ulr
i j(r) = − e2

εkBT

Z i Z j

r
(1 − exp(−ξr)) (20)

ξ being an adjustable numerical parameter [31]. Similarly, the total and direct correlation
functions can be written in terms of short- and long-range contributions (using matrix notation),

csr(r) = c(r)− ψ(r)

hsr(r) = h(r)− q(r)
(21)

with ψi j (r) = −βulr
i j(r). The long-range part of the total correlation function, q(r), is related

to ψ , through ρq̂(k)ρ = v̂(k)− ρ, with v̂−1 = ρ−1 − ψ̂(k). These short-range functions can
be used to rewrite the renormalized OZ equation mentioned above (see [17]).

The bridge functions were obtained as follows. The simulated pair correlation functions
were used along with the OZ relation in Fourier space, to obtain an initial guess for csr. We then
solved the renormalized OZ equation along with the closure relation (19) until convergence
was achieved. We found that initially we had to resort to a plain Broyles method in order to
approach the initial solution to the exact one. Direct use of the Newton–Raphson method did
not provide convergence. We found that the Newton–Raphson iteration can be used only when
the initial guess is close enough to the final solution. The NR method failed to converge for
the 60:1 case, therefore we report here results obtained only from Broyles iteration. We should
point out that the extraction of the bridge function in the case of suspensions is considerably
more difficult than in electrolyte solutions. Using the method described above we could not
find reasonable convergent solutions for 20:1 and 60:2 suspensions. The integral equation was
solved over a grid of 4096 points, with grid size 0.005 nm. Typical cut-offs, rc, in equation (19),
were 10, 4 and 4 nm, for colloid–colloid, colloid–ion and ion–ion correlations.

Along with the ‘exact’ results from simulation,we have included in the CGHNC formalism
the computation of the second-order diagrams of the colloid–colloid bridge function. In other
words, we have approximated the colloid–colloid bridge function in equation (17) as the sum
of the following diagrams [10]:

which, in this work, are expressed in terms of h-bonds [20]. This means that this kind of
‘resummed’ bridge function should be computed self-consistently with the colloid–colloid
structure. Hence a sort of iterative procedure should be carried out in order to compute both
the bridge function and the colloid–colloid radial distribution function. This procedure results
in an increase of the computational time required to find a solution. Nevertheless, we found
convergence in very few (three to four) iterations. We have used Gauss–Legendre quadrature
with 40–100 orthogonal polynomials and 120–175 root points in the evaluation of the angular
integrations involved in the computation of the diagram. On the other hand, radial integrations
were evaluated using Simpson’s rule with 600–700 points. A cut-off in the radial coordinate
(for which the bridge function is assumed to be zero) was introduced in order to reduce
computational time.

We have extracted the bridge function for two systems. First we have considered soft-core
colloid + counterion mixtures with charge asymmetry 20:2 and σcc = 3 nm, σci = 1.7 nm and
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Figure 6. Bridge functions as extracted from molecular dynamics simulations for colloid +
counterion mixtures with charge asymmetry 20:2 and soft-core interactions (see equation (18))
with σcc = 3 nm, σci = 1.7 nm and σii = 0.4 nm.

σii = 0.4 nm. This system was already studied previously [1, 32] although ‘empirical’ bridge
functions have not been reported. Second, we have extracted the bridge functions for the 60:1
system we have considered in the previous section. As mentioned above no convergent bridge
functions were obtained for the 60:2 system.

If figure 6 the ‘empirical’ bridge function for the 20:2 mixture are reported for several
densities, one of them located within the non-solution region of the multicomponent HNC
equation (0.003 nm−3). We can see that the colloid–colloid bridge function is completely
repulsive for densities much larger than the non-solution boundary (0.012 nm−3). Unlike the
case in the high-density region, when the density is decreased, the bridge function exhibits
attractive components, although this variation is not systematic. More interestingly, the
colloid–ion bridge function becomes more and more attractive as the non-solution boundary
is approached, whereas the ion–ion counterpart becomes more repulsive. This effect can be
regarded as a sign of counterion accumulation in the vicinity of the colloidal cores. These trends
are similar to the ones observed in electrolyte solutions (see [17]), implying that the origin
of the behaviour observed in the suspension might be the same as that studied in electrolyte
systems. What is interesting to note is that colloid–colloid bridge functions can be either
attractive or repulsive, unlike ion–ion and colloid–ion bridge functions that are, respectively,
repulsive and attractive.

In figures 7 and 8 the colloid–colloid ‘empirical’ bridge functions are compared with the
hard-sphere bridge functions with optimized hard-core diameters. Also, we have included
in these graphs the results obtained when the bridge function is approximated by the first
(second order in density) resummed bridge diagrams. From this comparison we can conclude
that neither the standard hard-sphere bridge function nor the second-order approximation of
the bridge function can reproduce the attractive features that are observed in the ‘empirical’
bridge functions. In this regard it must be noted that the fact that the first bridge diagram
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Figure 7. Colloid–colloid bridge functions for the same case considered in figure 6. In addition
to the molecular dynamic results (black circles), the hard-sphere bridge function for hard-sphere
diameter 4 nm and the first resummed bridge diagram are included in the graph (solid and broken
curves respectively).

for this kind of system is repulsive is not new. Attard and Miklavic [33] performed accurate
computations of the first resummed diagram for charged walls in the presence of a primitive
model electrolyte. They found that the inclusion of the first diagram resulted in a reduction
of the effective attraction between walls, precisely due to the repulsive features of the bridge
function when computed in this approximation.

5. Conclusions and final remarks

In this paper we have considered the application of the CGHNC theory to charged colloidal
suspensions, paying special attention to the problem of the non-solution boundary. In this
regard we have shown that, due to the simplifications implicit to the CGHNC approach, this
method exhibits a better numerical performance and a larger solution region than standard
multi-component integral equation approaches like HNC.

As regards to the nature of the non-solution boundary, we have observed that the onset of
the non-solution boundary is associated with the appearance of negative minima in our colloid–
colloid effective pair potential and the occurrence of attractive features in the ‘empirical’ bridge
functions. The minima in our effective potential is not necessarily due to the attractive nature
of the bridge function, though. Actually, the attractive minimum in βu′

eff appears in a region
where the colloid–colloid bridge function of the multicomponent system is repulsive. Further
work is needed to establish a clear relation between the minima observed in this work and the
differences between the bridge functions of the OCS and multicomponent systems.

The attractive features in the bridge functions, which obviously cannot be reproduced by
the standard hard-sphere functions (which are repulsive by definition), do not appear either in
the first diagrams of the colloid–colloid bridge function. We note that the lack of a systematic
dependence with density in the colloid–colloid bridge functions precludes the development of
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semiempirical theories. Any attempt to extend the theory to larger surface charge densities
should take into account these shortcomings. An improvement in this respect would provide
the basis to describe the ‘ionic condensation’ effect by means of integral equation approaches.

Acknowledgments

This work has been supported by the Spanish Dirección General de Investigación Cientı́fica
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